Inactivation and tachyphylaxis of heat-evoked inward currents in nociceptive primary sensory neurones of rats.

نویسندگان

  • S Schwarz
  • W Greffrath
  • D Büsselberg
  • R D Treede
چکیده

Membrane currents evoked by repeated noxious heat stimuli (43-47 degrees C) of 3 s duration were investigated in acutely dissociated dorsal root ganglion (DRG) neurones of adult rats. The heat stimuli generated by a fast solution exchanger had a rise time of 114 +/- 6 ms and a fall time of 146 +/- 13 ms. When heat stimuli were applied to heat-sensitive small (< or = 32.5 microm) DRG neurones, an inward membrane current (I(heat)) with a mean peak of 2430 +/- 550 pA was observed (n = 19). This current started to activate and deactivate with no significant latency with respect to the heat stimulus. The peak of I(heat) was reached with a rise time of 625 +/- 115 ms. When the heat stimulus was switched off I(heat) deactivated with a fall time of 263 +/- 17 ms. During constant heat stimulation I(heat) decreased with time constants of 4-5 s (inactivation). At the end of a 3 s heat stimulus the peak current was reduced by 44 +/- 5 % (n = 19). Current-voltage curves revealed outward rectifying properties of I(heat) and a reversal potential of -6.3 +/- 2.2 mV (n = 6). Inactivation was observed at all membrane potentials investigated (-80 to 60 mV); however, inactivation was more pronounced for inward currents (37 +/- 5 %) than for outward currents (23 +/- 6 %, P < 0.05). When neurones were investigated with repeated heat stimuli (3 to 5 times) of the same temperature, the peak current relative to the first I(heat) declined by 48 +/- 6 % at the 3rd stimulus (n = 19) and by 54 +/- 18 % at the 5th stimulus (n = 4; tachyphylaxis). In the absence of extracellular Ca2+ (buffered with 10 mM EGTA) inactivation (by 53 +/- 6 %) and tachyphylaxis (by 42 +/- 7 % across three stimuli) were still observed (n = 8). The same was true when intracellular Ca2+ was buffered by 10 mM BAPTA (inactivation by 49 +/- 4 %, tachyphylaxis by 52 +/- 7 % across three stimuli; n = 13). Thus, inactivation and tachyphylaxis were mainly independent of intra- and extracellular Ca2+. These results indicate that inactivation and tachyphylaxis of heat-evoked inward currents can be observed in vitro, similar to adaptation and suppression of action potential discharges elicited by comparably fast heat stimuli in vivo. Whereas the voltage dependence of I(heat) resembles that of capsaicin-induced membrane currents (I(Caps)), the independence of inactivation and tachyphylaxis of I(heat) from calcium is in clear contrast to I(Caps). A similar difference in calcium dependence of inactivation has been reported between heat-evoked and capsaicin-induced currents through the cloned capsaicin receptor channel VR1. Thus, the properties of I(heat) and of VR1 largely account for the adaptation and suppression of heat-evoked nociceptor discharges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists.

Recent studies demonstrated that heat-sensitive nociceptive primary sensory neurons respond to the vanilloid receptor (VR) agonist capsaicin, and the first cloned VR is a heat-sensitive ion channel. Therefore we studied to what extent heat-evoked currents in nociceptive dorsal root ganglion (DRG) neurons can be attributed to the activation of native vanilloid receptors. Heat-evoked currents wer...

متن کامل

Na+, K+ and Ca2+ currents in identified leech neurones in culture.

1. Na+, K+ and Ca2+ currents have been measured by voltage-clamp in Retzius (R), anterior pagoda (AP) and sensory (pressure, touch and nociceptive) cells dissected from the central nervous system (CNS) of the leech. These cells maintain their distinctive membrane properties and action potential configurations in culture. Currents carried by the individual ions were analysed by the use of channe...

متن کامل

Serotonin-gated inward currents are three times more frequent in rat hairy skin sensory afferents than in those innervating the skeletal muscle

Tight whole-cell patch clamp was performed in 191 DiI (1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate) retrogradely labeled rat sensory afferents from skin shoulders ( n = 93) and biceps femoris muscles ( n = 98). 5-HT-gated inward currents were evoked with 50-µM serotonin (5-HT; 5-hydroxytryptamine), and their frequency and current densities were compared between skin and sk...

متن کامل

Mechanosensitive currents in the neurites of cultured mouse sensory neurones.

Almost all sensory neurones in the dorsal root ganglia have a mechanosensory function. The transduction of mechanical stimuli in vivo takes place exclusively at the sensory ending. For cutaneous sensory receptors it has so far proved impossible to directly record the mechanically gated receptor potential because of the small size and inaccessibility of the sensory ending. Here we investigate wh...

متن کامل

The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury.

In this study, we examined the effect BRX-220, a co-inducer of heat shock proteins, in injury-induced peripheral neuropathy. Following sciatic nerve injury in adult rats and treatment with BRX-220, the following features of the sensory system were studied: (a) expression of calcitonin gene-related peptide (CGRP); (b) binding of isolectin B4 (IB4) in dorsal root ganglia (DRG) and spinal cord; (c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 528 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2000